Synthesis of 11*cis*, 15*cis*- and 10*cis*, 15*cis*-Octadecadienoic Acid, the Probable Precursors of 4*cis*-Heptenal in Autoxidized Butterfat

H. J. J. PABON and D. A. VAN DORP, Unilever Research Laboratory, Vlaardingen, The Netherlands

Abstract

11cis, 15cis- and 10cis, 15cis-Octadecadienoic acid are considered to be precursors of 4cis-heptenal occurring in autoxidized butterfat. The synthesis of these acids was carried out as follows. In liquid ammonia, 1-sodio-1,5-octadiyne was coupled with 1-chloro-9-iodononane and 1-sodio-1,6-nonadiyne with 1-chloro-8-iodooctane. The 1-chloro-10,14- and -9,14-heptadecadiynes thus obtained were converted into 11,15- and 10,15-octadecadiynoic acid. Stereospecific partial hydrogenation of the 11,15-diynoic acid, or of the methyl 10,15diynoate, and subsequent saponification, yielded the acids desired.

Introduction

During the isolation and identification of cream flavor, it was demonstrated (1) that the substance responsible for this flavor is identical with 4*cis*heptenal. Its concentration in autoxidized butterfat, from which it was obtained, was estimated to 1.5×10^{-3} mg/kg. In the non-conjugatable *cis,cis*-isolinoleic acid fraction of butterfat (ca. 20 mg/kg) the presence of 11,15- and 10,15-octadecadienoic acid was confirmed (2-4). The latter acids were considered to be precursors of 4*cis*-heptenal, according to Farmer's oxidation theory (see ref. 5 for a survey). In this paper we describe the synthesis of these acids, which on standing indeed developed a faint cream flavor.

Methods and Results

For the preparation, synthesis of the corresponding octadecadiynoic acids, followed by stereospecific partial hydrogenation was chosen. Working analogous to the method described for all-*cis*-9,15-, -8,15- and -7,15-octadecadienoic acid (6), would involve coupling of 1-bromo-3-hexyne (1-bromo-4-heptyne) with 11chloro-1-sodio-1-undecyne (10-chloro-1-sodio-1-decyne).

$$\begin{array}{c} HC \equiv C - (CH_{2})_{P} - C \equiv CH \\ & a) \ 1 \ eq. \ NaNH_{2}/liq. \ NH_{3} \\ & b) \ C_{2}H_{5}I \\ \\ C_{2}H_{5}C \equiv C - (CH_{2})_{P} - C \equiv CH & I \ a/b \\ & a) \ 1 \ eq. \ NaNH_{2}/liq. \ NH_{3} \\ & b) \ I(CH_{2})_{q} - Cl \\ \\ C_{2}H_{5}C \equiv C - (CH_{2})_{P} - C \equiv C - (CH_{2})_{q} - Cl & II \ a/b \\ & a) \ NaCN \\ & b) \ OH^{-} \ c) \ H^{+} \\ \\ C_{2}H_{5}C \equiv C - (CH_{2})_{P} - C \equiv C - (CH_{2})_{q} - COOH & III \ a/b \\ & H_{2}/Lindlar's \\ & catalyst \\ & H_{2}H_{5}C = C - (CH_{2})_{P} - C \equiv C - (CH_{2})_{q} - COOH & IV \ a/b \\ \end{array}$$

a b These reactions are considered to be either unsuccessful or not to lead to high yields (cf. refs. 7,8). Therefore, alkylation of 1,5-hexadiyne (1,6-heptadiyne) first with ethyl iodide and then with 1-chloro-9-iodononane (1-chloro-8-iodooctane), followed by conversion into carboxylic acid was used. The alkadiynes were prepared by known procedures (9,10).

Using this scheme, 11cis, 15cis-octadecadienoic acid (IVa) and 10cis, 15cis-octadecadienoic acid (IVb) were obtained in 15% and 8.5% overall yield respectively.

Experimental Procedures

All temperatures are uncorrected. The melting points were determined with a Büchi apparatus. The IR spectra were recorded on a Unicam SP 100 spectrometer, the mass spectra on an AE1-MS 9 mass spectrometer and the NMR spectra (60 MHz) on a Varian A 60 NMR spectrometer. Samples dissolved in CCl₄ or CDCl₃ were used for the latter recordings. First-order chemical shifts (δ -values) are quoted in ppm relative to internal tetramethylsilane; they are assigned to the type of protons mentioned. The ratios of integrated peaks are given in parentheses. Where necessary, commercially available chemicals were dried and purified by standard methods; purified nitrogen was used as cover gas.

Alkadiynes (I)

1,5-Octadiyne (Ia). Ia was prepared by coupling 0.53 mole ethyl iodide with 1-sodio-1,5-hexadiyne, prepared from 0.46 mole NaNH₂ and 0.44 mole 1,5-hexadiyne (9) in 500 ml liquid NH₃/70 ml diethyl ether. Yield 46%, bp 50-55 C/22 mm; n_D^{15} 1.4580, n_D^{25} 1.4530 (bp 45-47 C/21 mm; n_D^{15} 1.4580; ref. 11); purity (GLC) 98%.

IR spectrum: bands at 3310 and 2135 cm⁻¹ (HC \equiv C-), 1325 cm⁻¹ (-C \equiv C-CH₂-), 1381 and 2935 cm⁻¹ (CH₃-), and 785 cm⁻¹ (C₂H₅-).

NMR spectrum:

distorted triplet at § 1.09	(J	= 7	Hz)	(3)	(-CH ₃)
complex at δ 1.89 complex at ca. δ 2.1 complex at δ 2.3	}	(7	') -	{	

1,6-Nonadiyne (Ib). Ib was obtained analogously from 0.49 mole ethyl iodide and 1-sodio-1,6-heptadiyne, prepared from 0.49 mole NaNH₂ and 0.45 mole 1,6-heptadiyne (10). Yield 56%, bp 64 C/17 mm; n_D^{15} 1.4595; purity (GLC) 86%.

IR spectrum: bands at 3310 and 2130 cm⁻¹ (HC \equiv C-), 1325 cm⁻¹ (-C \equiv C-CH₂-), 1381 and 1438 cm⁻¹ (CH₃-), and 785 cm⁻¹ (C₂H₅-). Moreover, bands at 918, 998, 1645 and 3080 cm⁻¹ (H₂C = CH-).

1-Chloro-heptadecadiynes (II)

1,Chloro-10,14-heptadecadiyne (IIa). To a suspension of NaNH₂, prepared from 5.1 g (0.22 mole) sodium in 700 ml liquid NH₃ with $Fe(NO_3)_3 \cdot 9H_2O$

as catalyst, 22.6 g (0.21 mole) Ia was added in 35 min and the mixture stirred for another 60 min. Subsequently, 55 g (0.19 mole) 1-chloro-9-iodononane (12), bp 95–102.5 C/0.09 mm; n_D^{25} 1.5080 (lit. n_D^{25} 1.5074; ref. 13) was added dropwise in 4 hr. After stirring for 2.5 hr, the mixture was kept overnight in a Dewar vessel at -70 C and the next day stirred for another 2.5 hr. The NH₃ was evaporated on a waterbath, 150 ml water was added and the mixture extracted with ether (4 × 150 ml). The combined ether layers were washed with 1 N H₂SO₄, and with water until acid-free, dried over Na₂SO₄ and evaporated. Distillation of the residue yielded 25.6 g (50%) IIa bp 130 C/0.11 mm; n_D^{25} 1.4813.

1-Chloro-9,14-heptadecadiyne (IIb). In the same way as above, IIb was prepared by coupling the 1-sodio derivative of 30 g (0.25 mole) Ib with 68.6 g (0.25 mole) 1-chloro-8-iodooctane (12), bp 82–85 C/0.08 mm; n_D^{25} 1.5114 (lit. n_D^{25} 1.5113; ref. 13) in 400 ml liquid NH₃. Yield 37.5 g (56%) IIb; bp ca. 120 C/0.05 mm; n_D^{25} 1.4795.

Octadecadiynoic Acids (III)

11,15-Octadecadiynoic Acid (IIIa). Five grams (0.02 mole) IIa was converted into its nitrile by adding it in 5 min to a heated (95 C) suspension of 1.3 g (0.03 mole) NaCN in 6.6 ml dimethyl sulfoxide, raising the temperature to 150 C and maintaining it for 15 min (14,15). After cooling, the mixture was poured into 100 ml water, extracted with ether $(4 \times 50 \text{ ml})$ and the combined ether layers were evaporated. The residue (5.0 g)—dis-solved in 70 ml 0.47 N 80% ethanolic NaOH—was boiled under reflux for 24 hr and subsequently poured into 200 ml water. After extraction with ether (2 imes100 ml) to remove undesired by-products the water layer was acidified with 4 N H_2SO_4 and again extracted with ether (4 × 100 ml). This ether extract was washed with water until acid-free, dried over Na_2SO_4 and evaporated. The residue, dissolved in light petroleum and decolored by treating with active carbon, was finally crystallized from light petroleum at -5 C to -15 C.

Yield 3.3 g (64%) IIIa; mp 76–77.1 C. Found: C, 78.0; H, 10.1. Calculated for $C_{18}H_{28}O_2$ (M = 276.40): C, 78.2; H, 10.2.

NMR spectrum :

distorted triplet at δ 1.09 (J = 7 Hz) complex at δ 1.3 complex at δ 1.8-2.6 (10) (-CH₂-C \equiv C- and -CH₂-CCOO-) singlet (1) (-COOH)

A sample was esterified with diazomethane in ether and completely hydrogenated over Adams' eatalyst; methyl stearate content (GLC) >99%.

10,15-Octadecadiynoic Acid (IIIb). In the same way as described above 10.7 g (0.04 mole) IIb was converted into 7.1 g (65%) IIIb mp 48-49 C.

Found: C, 78.1; H, 10.3. Calculated for $C_{18}H_{28}O_2$ (M = 276.40): C, 78.2; H, 10.2.

NMR spectrum :

distorted triplet at δ 1.09 (J = 7 Hz) complex at δ 1.12–1.86 complex at δ 1.86–2.8 (10) (-CH₂-C = C- and -CH₂-COO-) singlet (1) (-COOH)

Cis, cis-Octadecadienoic Acids (IV)

11cis,15cis-Octadecadienoic Acid (IVa). A solution of 1.274 g (0.005 mole) IIIa and 0.3 g quinoline in 40 ml light petroleum was hydrogenated in the presence of 0.5 g Lindlar's catalyst (16,17). H₂-Uptake: 211 ml (0 C, 760 mm Hg; calc.: 207 ml). After removal of the catalyst by filtration and quinoline by extraction with 1 N HCl (2 × 10 ml), the light petroleum was washed acid-free with water, dried over Na₂SO₄ and evaporated. Yield: 1.29 g oil (~ 100%), mp ca. 11 C; n_D^{25} 1.4672; purity (GLC of methyl ester) >98%.

of methyl ester) >98%. IR spectrum: bands at 720 and 3010 cm⁻¹ H H

 $(-\mathrm{C}=\mathrm{C}-),~1717~\mathrm{cm}^{-1}~(-\mathrm{COOH})\,;$ content of trans isomer $<\!2\%.$

Mass spectrum: parent peak (molecule ion) at $m/e_{-} \frac{280}{2-0}$ (calc. 280).

NMR spectrum:

distorted triplet at $\delta 0.95 \ (J = 7 \text{ Hz}) \ (3) \ (CH_{3-})$ singlet at $\delta 1.30 \ (14) \ (-CH_{2-})$

complex at δ 1.83-2.5 (10) (-CH₂-C = C - and -CH₂-COO-)

complex at δ 5.25 (4) (-C=) singlet (1) (-COOH)

The double bonds were located as follows (3): The methyl ester was treated with OsO_4 (less than 0.4 mole per mole of ester). Subsequently, hydrogenation with PtO_2 as catalyst, followed by hydrolysis of the osmate ester and cleavage with HIO_4 of the resulting diol mixture, yielded a mixture of heptanal, propanal (trace), and almost equal amounts of methyl 11oxoundecanoate and 15-oxopentadecanoate. This means that the double bonds are at the 11- and 15position.

10cis,15cis-Octadecadienoic Acid (IVb). An amount of 6.4 g (0.02 mole) IIIb was esterified with a solution of diazomethane in ether and distilled to give 5.0 g (74%) methyl-10,15-octadecadiynoate. An amount of 2.78 g (0.01 mole) of this ester and 0.25 g quinoline were dissolved in 25 ml of light petroleum and subsequently hydrogenated in the presence of 0.22 g of Lindlar's catalyst. H₂-Uptake: 425 ml (0 C, 760 mm Hg; cale. 430 ml). After working up, 2.57 g (91%) methyl-10*cis*,15*cis*-octadecadienoate was obtained. An amount of 1.57 g was saponified by boiling for 30 min with 25 ml 0.25 N ethanolic KOH. After cooling, the mixture was acidified and worked up as usual to give 0.925 g IVb (62%; 42% calc. on IIIb) n_D^{25} 1.4685; purity (GLC of methyl ester) >97%.

IR spectrum, methyl ester: bands at 720 and 3010 H H

cm⁻¹ (–C = C–) and 1745 cm⁻¹ (–COOCH₃); content of trans isomers <2%.

Mass spectrum, methyl ester: parent peak (molecule ion) at m/e 294 (cale. 294).

NMR spectrum, methyl ester:

distorted triplet at δ 0.96 (J = 7 Hz) (3) (CHa-) complex at δ 1.12-1.73 (14) (-CH₂-)

complex at δ 1.73–2.4 (10) (-CH₂-C = C-) and -CH₂-COO-)

-CH₂-COO-) singlet at δ 3.55 (3) (-COOCH₃)

complex at δ 5.23 (J = 4.5 Hz) (4) (-C =)

In order to locate the double bonds, IVb, methyl ester, was treated as described for IVa, methyl ester. The result was a mixture of octanal, propanal (trace), and almost equal amounts of methyl 10-oxodecanoate and 15-oxopentadecanoate, which means that the double bonds are at the 10- and 15-position.

ACKNOWLEDGMENT

Analytical investigations by J. de Bruijn, K. de Jong, A. A. Memelink, J. H. Recourt, and P. den Ouden. Experiments in cooperation with L. v.d. Wolf.

REFERENCES

1. Haverkamp Begemann, P., and J. C. Koster, Nature 202, 552-553 (1964).

- De Jong, K., and H. van der Wel, Ibid. 202, 553-555 (1964).
 De Jong, K., Fette, Seifen, Anstrichmittel 69, 277-279 (1967).
 Van der Wel, H., and K. de Jong, Ibid. 69, 279-281 (1967).
 Badings, H. T., Neth. Milk Dairy J. 14, 215-242 (1960).
 Stroink, J. B. A., and S. Sparreboom, JAOCS 44, 531-533 (1967).
 Ranhed B. A. "Aastronic Companyation Companyation".
- (1967).
 Raphael, R. A., "Acetylenic Compounds in Organic Synthesis," Butterworths Scientific Publications, London, 1955, p. 4.
 Schulte, K. E., and K. P. Reiss, Chem. Ber. 86, 777-781 (1953).
 Raphael, R. A., and F. Sondheimer, J. Chem. Soc. 1950, 120-122.
- Henne, A. L., and K. W. Greenlee, J. Am. Chem. Soc. 67, 484-485 (1945).
 Sondheimer, F., Ibid. 74, 4040-4043 (1952).
 Ahmad, K., F. M. Bumpus and F. M. Strong, Ibid. 70, 3391-3394 (1948).
 Huber, W. F., Ibid. 73, 2730-2733 (1951).
 Smiley, R. A., and C. Arnold, J. Org. Chem. 25, 257-258 (1960).
 Friedman, L., and H. Schechter, Ibid. 25, 877-879 (1960).
 Lindlar, H., Helv. Chim. Acta 35, 446 (1952).
 Lindlar, H., and R. Dubuis, Org. Syn. 46, 89 (1966).
- - [Received August 15, 1968]

